

Tidal Marsh Restoration in Suisun Marsh

Stuart W. Siegel Ph.D., P.W.S.

Wetlands and Water Resources

www.swampthing.org

Making Science Work for Suisun Marsh March 1-2, 2004 Sacramento, California

Talk Goal

To provide the audience with an understanding of the opportunities and challenges facing tidal marsh restoration in Suisun Marsh

Talk Overview

Regional Restoration Targets

The Basics of Tidal Marsh and Their Restoration – Conceptual Models and the Big Picture

Site Issues Relevant to Suisun Marsh

Link to Next Two Talks - Regional View

Restoration Targets and Progress

- 5,000 to 7,000 acres –
 California Bay-Delta Authority
- 17,000 to 22,000 acres –
 Baylands Ecosystem Habitat Goals Report
- 0 acres –
 Restored since CBDA ROD and Goals Report
- 1,800 acres –
 Under construction (Montezuma)
- 290 acres –
 Active planning (Hill Slough, Blacklock)
- ** We are "re-creating" tidal marsh under modern conditions and constraints on lands where it once existed; we are not "restoring" the exact marshes of 1850 and before

1. What is a Tidal Marsh?

- Lands inundated by the daily tides
- Consist of
 - Vegetated marsh plains
 - Channel networks
 - Sometimes with ponds and/or pannes
- Islands or adjacent to upland
- Fundamentally, the physiographic template (the geomorphology) and the vegetation define available habitats at macro and micro scales
- Extensive physical and biological linkages

How Tidal Marsh Forms

Marsh Accretion Patterns, Natural and Restored

Natural Marsh Formation, "Slow"

Transgression -Upland expansion
with sea level rise

Ta

Marsh surface elevation over time

Progradation -Bayward expansion
with sedimentation
(e.g., hydraulic mining)

Marsh Restoration, "Fast" (we hope)

Distance from shore

Elevation Trajectories of Restored Tidal Marsh

- Understand processes that drive elevation increases
- Be realistic in expectations
- Judgment to accept or reject

Conceptual Model – External Controls

A. Salinity Gradients

Conceptual Model – External Controls

B. Tidal Range Gradients

Conceptual Model – External Controls C. Sediment Supply

- Vital to marsh growth and maintenance especially with sea level rise
- Large spatial and temporal variability:
 - Highly seasonal river and stream discharge
 - Proximity to Delta outflow as major sediment source
 - Proximity to mudflats for resuspension
 - Distance to sediment sources and loss en route
- Large magnitude, infrequent events can play a significant role especially where sediment supply otherwise limited
- Sediment supply may not be most significant contributor in some settings

Sediment Supplies for Suisun Marsh

Enough?

4. Linkage Between Physical and Biological Processes

Legend:
Pressure pathways/Forcing functions
Feedback Pressure pathways

State/Internal Pressures

Conceptual Model Internal Site Characteristics and the Baseline Conditions Hypotheses

- Degree of Subsidence
- Geomorphology
- Existing Plants
- Substrate Suitability for Target Flora and Fauna

Hypothesis: there is a baseline threshold elevation at which initial dominant processes diverge, with a mix of biological (vegetation colonization) and physical (mineral sedimentation) processes above and predominantly physical processes below.

- 1. Establishing effective tidal connections
- 2. Reversing subsidence
- 3. Establishing channel networks
- 4. Can we establish natural ponds?
- 5. What to do with perimeter levees
- 6. Managing exotic plant and animal species
- 7. Maintaining flood control
- 8. Working around infrastructure
- 9. Meeting vector control requirements
- 10. Contaminants
- 11. Regional effects on salinity, hydrodynamics, wildlife resources next two talks (Enright, Takekawa)

1. Establishing Tidal Connections

- Full, unrestricted tidal exchange is the hallmark of every successful tidal marsh restoration project
- Geometry for levee breach(es) considers the larger as-built as well as "equilibrium" tidal prism
- Levee breach siting considers external and internal factors, such as currents, winds, adjacent properties, extant channel networks, current topography and the like

Site Issues for Suisun 2. Reversing Subsidence – Big Challenge

- Degree of subsidence varies within and between properties
- Common "wisdom" says on the order of ~1 to 4 feet; greater at some sites (Van Sickle, Montezuma, others?)
- We need good data on existing topography

2. Reversing Subsidence – Big Challenge

- Natural sedimentation
- Vegetation peat accumulation and sediment trapping
- Fill placement such as dredged material
- Muted regimes with water control structures to lower effective intertidal elevations

3. Establishing Channel Networks

- Extent of preserved historic channel network varies based largely on intervening land use since diking
- Suisun Marsh mainly managed wetlands:
 - Many new ditches constructed to manage water circulation
 - Borrow ditches around perimeter levees from construction and maintenance
 - Grading typically removes channels wholly or partially
- Tides and sedimentation tend to adopt morphology at breaching
- Methods for re-establishing channel network depend largely on the amount of subsidence and degree of site modifications

4. Natural Ponds

- We learned from Robin Grossinger's Historical Conditions talk yesterday that the tidal marshes of Suisun once supported many ponds with tremendous waterfowl abundance
- Is it possible to recreate such ponds within tidal marsh restoration projects?
 - Little understanding of processes that formed and maintained ponds historically
 - Little understanding of processes that could form and maintain ponds in restoration projects
 - Hypersalinity? Avian foraging? No drainage?
- Ripe for investigation...

5. Perimeter Levees

- Options for fate of perimeter levees not providing flood control functions:
 - Leave in place as strip of upland refuge
 - Lower to high (or lower) intertidal marsh height to provide early vegetation colonization sites
 - Convert to habitat levees by widening interior side to gentle slopes; may or may not lower original levee

6. Managing Exotic Species

- Plants, invertebrates, fish
- Peppergrass (Lepidium latifolium) the most significant and clear concern
- Pre-emptive establishment of target vegetation?
- Ongoing active removal during early colonization?
- Ripe for identifying appropriate strategies

Site Issues for Suisun 7. Flood Control

- Need to avoid tidal flooding of the neighbors
- In order of presumed lowest to highest flood control requirements (and thus costs) for restoration projects:
 - Island sites presumably have no flood control implications
 - "Peninsula" sites with a small levee length separating neighboring properties require some form of flood control
 - Sites with several neighbors and thus greater levee length require greater amounts of flood control effort

Site Issues for Suisun 8. Infrastructure

- Roads, rail, below and above ground utility lines (petroleum pipelines, electrical transmission lines, sewer lines), gas drilling pads
- Importance of due diligence to know in advance of property acquisition
- Effects highly site specific and range from little or no interference to forcing significant design constraints and/or high infrastructure relocation costs

Site Issues for Suisun 9. Vector Control

- Mosquito production presumed lower in tidal marshes assuming design does not create stagnant water areas
- Compared to managed marshes, lack of water control structures can complicate resolving stagnant areas
- Work with Solano County Mosquito Abatement District early and often

Site Issues for Suisun 10. Contaminants

- A long-recognized desirable function of tidal wetlands are their ability to sequester contaminants from the environment
- However, "excessive" accumulation can be a concern
- Methymercury production currently the greatest concern and remains an open question
 - Currently an active area of research
 - Important to develop comparative understanding of production rates and differences in bioavailability pathways between existing tidal marsh, restored tidal marsh (including rates at different stages), and managed wetlands

Links to Regional View - Next Talks

- Salinity and hydrodynamic considerations
- Regional conservation issues for avian resources

